Some inequalities for the Kirchhoff index of graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

extensions of some polynomial inequalities to the polar derivative

توسیع تعدادی از نامساوی های چند جمله ای در مشتق قطبی

15 صفحه اول

Kirchhoff index of composite graphs

Let G 1 + G 2 , G 1 • G 2 and G 1 {G 2 } be the join, corona and cluster of graphs G 1 and G 2 , respectively. In this paper, Kirchhoff index formulae of these composite graphs are given.

متن کامل

note on degree kirchhoff index of graphs

the degree kirchhoff index of a connected graph $g$ is defined as‎ ‎the sum of the terms $d_i,d_j,r_{ij}$ over all pairs of vertices‎, ‎where $d_i$ is the‎ ‎degree of the $i$-th vertex‎, ‎and $r_{ij}$ the resistance distance between the $i$-th and‎ ‎$j$-th vertex of $g$‎. ‎bounds for the degree kirchhoff index of the line and para-line‎ ‎graphs are determined‎. ‎the special case of regular grap...

متن کامل

On the Kirchhoff Index of Graphs

Let G be a connected graph of order n with Laplacian eigenvalues μ1 ≥ μ2 ≥ . . .≥ μn−1 > μn = 0. The Kirchhoff index of G is defined as Kf = Kf(G) = n∑n−1 k=1 1/μk. In this paper. we give lower and upper bounds on Kf of graphs in terms on n, number of edges, maximum degree, and number of spanning trees. Moreover, we present lower and upper bounds on the Nordhaus–Gaddum-type result for the Kirch...

متن کامل

Some topological indices of graphs and some inequalities

Let G be a graph. In this paper, we study the eccentric connectivity index, the new version of the second Zagreb index and the forth geometric–arithmetic index.. The basic properties of these novel graph descriptors and some inequalities for them are established.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Malaya Journal of Matematik

سال: 2018

ISSN: 2319-3786,2321-5666

DOI: 10.26637/mjm0602/0008